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 This paper extends the exact theory for second-order wave dif fraction by a vertical cylinder
 in monochromatic waves to the case of bichromatic incident waves .  On the basis of the
 usual assumption of an irrotational flow ,  the wave-dif fraction problems at second-order
 sum-frequencies and dif ference-frequencies are considered .  The corresponding second-
 order dif fraction potentials are decomposed into three parts ;  these are associated with the
 second-order incident wave ,  the quadratic forcing terms on the free-surface due to the
 first-order potential ,  and the linearized ‘free-wave’ component resulting from the boundary
 condition on the body surface .  A semi-analytical method is presented for obtaining a
 particular solution which exactly satisfies the inhomogeneous free-surface condition .  In the
 case of a bottom-seated vertical circular cylinder ,  complete semi-analytical expressions for
 the second-order sum and dif ference frequency potentials are derived .  Numerical results
 for the quadratic transfer functions of the second-order force components ,  and the
 nonlinear free-surface elevation complete to second-order ,  are given for this case .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 It is well known that second-order wave loads may play a significant role in exciting
 responses of certain types of of fshore structure in the frequency ranges either
 significantly higher or significantly lower than the frequency at which the incident wave
 possesses most energy .  Typical examples of these responses are the low-frequency
 horizontal-plane motions of moored ships and the high-frequency ‘springing’ vibrations
 of ship hulls and tension leg platforms [e . g .  Herfjord & Nielsen (1986) ,  Kim & Yue
 (1988) Eatock Taylor (1991)] .  As mentioned by Lee  et al .  (1991) ,  tension leg platforms
 (TLPs) of fer a unique example where both low- and high-frequency second-order
 forces are important .  Furthermore ,  another major concern for designers is that the
 nonlinear wave dif fraction by a structure may have an even more significant ef fect on
 the wave field in the vicinity of the structure .  In the case of dif fraction of
 monochromatic incident waves by a single bottom-seated vertical circular cylinder ,  it
 has been shown (Kriebel 1992) that the experimental data for maximum wave run-up
 dif fer from the predictions of linear theory by up to 44% .  Great improvement can be
 achieved in the theoretical predictions by incorporating the second-order contribution
 (Kriebel 1992 ;  Huang & Eatock Taylor 1996) .

 There has therefore been considerable interest in investigating the second-order
 interactions between waves and structures .  The theoretical analysis of this nonlinear
 phenomenon is usually carried out in the frequency domain .  In principle this can be
 based on directly solving for the second-order velocity potential .  For general
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 geometries this approach requires a numerical implementation ,  for example by using a
 boundary-element method (BEM) [e . g .  Chau (1989) ,  Kim & Yue (1989 ,  1990) ;  Chen  et
 al .  (1991) ,  Lee  et al .  (1991)] .  A disadvantage of this direct approach is that the
 corresponding computer programs usually require large amounts of CPU time and
 computer storage to run ,  and sometimes it is dif ficult to obtain converged results .  This
 is mainly due to the dif ficulties in evaluating the free-surface integral which is needed
 to enforce the inhomogeneous free-surface condition .

 An alternative approach ,  which avoids directly solving for the second-order velocity
 potential ,  was proposed by Lighthill (1979) for the case of infinite water depth and by
 Molin (1979) for finite water depth .  This can also be implemented in a numerical
 method for bodies of arbitrary geometry .  Such an indirect approach was also used by
 Eatock Taylor & Hung (1987) in a semi-analytical investigation of the second-order
 dif fraction forces on a vertical cylinder in regular waves ,  and was extended by Williams
 and co-authors (Abul-Azm & Williams ,  1988 ,  1989 ;  Ghalayini & Williams 1991 ;
 Moubayed & Williams 1994 ,  1995) to study second-order interactions between waves
 and single or multiple vertical cylinders .  In the latter case the plane-wave (large-
 spacing) approximation of McIver & Evans (1984) was adopted .  With the indirect
 approach ,  however ,  the dif ficulties associated with the free-surface integral still exist ,
 and it cannot provide results for the wave run-up and free-surface elevation .

 Recently ,  Newman (1996) investigated the asymptotic behaviour of second-order
 dif fraction of monochromatic waves by a vertical cylinder at both low and high wave
 frequencies .  In Huang & Eatock Taylor (1996) we developed a complete semi-
 analytical solution for second-order dif fraction of monochromatic waves by a truncated
 vertical cylinder .  The latter solution was based on directly solving the boundary-value
 problem for the first- and second-order velocity potentials .  A particular solution to the
 second-order dif fraction potential ,  exactly satisfying the inhomogeneous free-surface
 condition ,  was derived .  That solution is here extended to the case of bichromatic
 incident waves .  Both second-order sum- and dif ference-frequency problems are
 considered .  The second-order dif fraction potential for either the sum-frequency or the
 dif ference-frequency problem is decomposed into two parts ,  corresponding to the
 second-order incident wave and the quadratic forcing on the free-surface (the ‘‘locked’’
 wave) .  The eventual purpose of the present approach is to provide an ef ficient means
 for predicting second-order loads and free-surface elevations for some of fshore
 structures such as TLPs in irregular waves .  The solution for the locked wave
 component developed here is suitable for arbitrary axisymmetric structures ,  but for
 simplicity we restrict the following analysis to the case of a single ,  bottom-seated
 vertical circular cylinder .  A complete semi-analytical solution is found ,  thus providing a
 way of testing the various numerical methods .  This solution is more general than that
 given in the appendix of Kim & Yue (1990) ,  which can only give results for forces .  By
 incorporating an appropriate interaction theory ,  the present solution can be extended
 to study the second-order interaction between waves and multiple cylinders .

 2 .  FORMULATION OF THE FIRST- AND SECOND-ORDER VELOCITY
 POTENTIALS

 We consider the dif fraction of a plane bichromatic incident wave by a bottom-seated
 vertical circular cylinder in water of uniform depth  h .  Assuming irrotational flow ,  we
 define the velocity potential of the wave field ,   F ( r ,  θ  ,  z ,  t ) ,  in a cylindrical polar
 coordinate system .  The  z -axis coincides with the cylinder axis ,  originating from the
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 series with respect to the wave slope parameter  »   ( »  Ô  1) :

 F ( r ,  θ  ,  z ,  t )  5  » F (1)  1  »  2 F (2)  1  2 ( »  3 )

 5  R H O 2
 j 5 1

 f  (1)
 j  ( r ,  θ  ,  z )e 2 i v j t  1  O 2

 j 5 1
 O 2
 l 5 1

 [ f 2
 jl  ( r ,  θ  ,  z )e 2 i v 2
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 1  f 1
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 j l t j  1  2 ( »  3 ) ,  (1)

 where  v  Ú

 jl  5  v j  Ú  v l  ,  and  v j   is the angular frequency of the  j th wave component
 (  j  5  1 , 2) .

 The first-order potential  f  (1)
 j    can be written as

 f  (1)
 j  5  O ̀

 n 5 0
 » n h f  (1)

 Ij ,n ( r ,  z )  1  f  (1)
 Dj ,n ( r ,  z ) j cos( n θ  ) ,  (2)

 where  f  (1)
 Ij ,n   and  f  (1)

 Dj ,n   are ,  respectively ,  the  n th Fourier harmonics of the first-order
 incident and dif fraction potentials  f  (1)

 Ij    and  f  (1)
 Dj    corresponding to wavenumber  k j  ,  and

 »  0  5  1 ,  » n  5  2 for  n  $  2 .  Furthermore ,

 f  (1)
 Ij ,n ( r ,  z )  5

 2 i gA j

 v j

 cosh( k j ( z  1  h ))
 cosh  k j h

 J n ( k j r )i n ,  (3)

 where  g  is the gravitational acceleration ,  and  A j   is the wave amplitude .
 We decompose the second-order sum- and dif ference-frequency potentials  f  Ú

 jl    into

 f  Ú  5  O ̀
 n 5 0

 » n h f  Ú

 In ( r ,  z )  1  f  Ú

 Dn ( r ,  z ) j cos( n θ  ) ,  (4)

 where  f  Ú

 In ,  f  Ú

 Dn   are ,  respectively ,  the  n th Fourier mode of the sum- and dif ference-
 frequency incident and dif fraction potentials [see also Kim & Yue (1990)] ,  and the
 subscripts  j  and  l  on the sum and dif ference frequency quantities are here omitted for
 convenience .   f  Ú

 In   are given by
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 where an asterisk denotes the complex conjugate .  The asymptotic behavior of  f 1
 I    and

 f 2
 I  ,  which are the summation of the corresponding Fourier components ,  is discussed

 by Kim & Yue (1990) .
 The sum- and dif ference-frequency dif fraction potentials  f  Ú

 D ( r ,  θ  ,  z ) satisfy the
 following boundary-value problem :
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 where  Ω   is the quiescent fluid domain ,  and  q Ú ( r ,  θ  ) are the sum- and dif ference-
 frequency forcing terms on the free-surface ,  defined by

 q 1  5  1 – 2 ( q 1
 jl  1  q 1

 lj  ) ,  q 2  5  1 – 2 ( q 2
 jl  1  q 2 * lj  ) .  (11)

 The sum frequency forcing term is obtained from
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 after the free-surface boundary conditions for  f  (1)
 Dj  ,  f

 (1)
 Dl    have been exploited .  One can

 get the expression for  q 2
 jl    by replacing i v l   with  2 i v l  ,  and  f  (1)

 Il  ,  f  (1)
 Dl    and their derivatives

 with the corresponding complex conjugates .  Apart from the above governing equation
 and boundary conditions ,   f  Ú

 D   should satisfy appropriate radiation conditions at  r  5  ̀  ,
 which will be discussed in Sections 3 and 4 .

 3 .  SOLUTION OF THE SECOND ORDER DIFFRACTION POTENTIALS

 3 . 1 .  D ECOMPOSITION OF THE  P OTENTIALS INTO  C OMPONENTS

 We decompose the sum- and dif ference-frequency dif fraction potentials  f  Ú

 D ( r ,  θ  ,  z ) into
 two components :

 f  Ú

 D ( r ,  θ  ,  z )  5  f  Ú

 1 D  1  f  Ú

 2 D ,  (13)

 where  f  Ú

 1 D   corresponds to the free wave potentials due to linear dif fraction of the
 second-order incident wave ,  and  f  Ú

 2 D   are the locked waves due to the forcing terms on
 the free surface ,  satisfying a homogeneous condition on the body surface .

 We further expand  f  Ú

 kD , k  5  1 , 2 into Fourier series :
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 Each of the above components satisfies the following Helmholtz equation in the fluid
 domain and the common boundary condition on the seabed  z  5  2 h :
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 On the quiescent free surface ,  the boundary condition can be specified as
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 where  d k  5  0 for  k  5  1 ,  and  d k  5  1 for  k  5  2 ;   q Ú

 n    are the  n th Fourier harmonics of the
 free-surface forcing terms ,  i . e .
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 By expanding the first-order incident and dif fraction potentials into Fourier
 components ,  we can get the following expressions for  q 1
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 One can obtain the equation for  q 2
 jl ,n   by replacing  2 i with i in the expression for  c 2  ,

 and replacing all the incident and dif fraction potentials and their derivatives which
 correspond to wavenumber  k l   with the corresponding complex conjugates .

 3 . 2 .  S OLUTION FOR  f  Ú

 1 D ,n

 Apart from the governing Helmholtz equation and the common boundary conditions at
 the sea bottom and on the free-surface [equations (15) – (17)] ,  we need to specify the
 radiation condition at  r  5  ̀    and the boundary condition on  r  5  a  for  f  Ú

 1 D ,n .  We first
 separate the variables  r  and  z  using the eigenfunction expansion method .  We write
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 By substituting equation (22) into (15) ,  one can obtain the governing equation for
 P Ú

 mn ( r ) ,  which is the ordinary Bessel equation for  m  5  0 and the modified Bessel
 equation for  m  .  0 .  Each component  P Ú

 mn   must ,  of course ,  satisfy the Sommerfeld
 radiation condition .  Thus ,  we have

 lim
 r 5 ̀

 4 r S d P Ú

 mn

 d r
 2  i k Ú

 m P Ú

 mn ( r ) D  5  0 ,  m  5  0 ,  1 ,  2 ,  .  .  .  (27)

 Furthermore ,  we specify the boundary condition on the surface of the cylinder ,   r  5  a ,
 as
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 Û r
 .  (28)

 Solutions to the Bessel equation ( m  5  0) and modified Bessel equation ( m  .  0) which
 satisfy the radiation condition at  r  5  ̀    are of the form :
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 where H n ( x ) is the  n th order Hankel function of the first kind ,  K n ( x ) is the  n th order
 modified Bessel function ,  and a prime denotes the derivative with respect to the
 argument ;   a  Ú

 0  ,  a  Ú

 m   are constants which are determined from equation (28) as
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 3 . 3 .  S OLUTION FOR  f  Ú

 2 D ,n   IN THE  C ASE OF  F INITE  W ATER  D EPTH

 Using the Fourier expansion in the circumferential direction and the eigenfunction
 expansion in the vertical direction ,  we can express  f  Ú

 2 D ,n   in the following form :
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 One can easily check that if we take the wave number  k  Ú   in the above equation as the
 real root of the dispersion equation

 k  Ú  tanh( k  Ú h )  5  2 …  Ú  (33)

 then the inhomogeneous boundary condition on the free-surface is exactly satisfied .
 The vertical eigenfunctions  Z Ú

 m ( z ) have been defined in equations (23) and (24) .
 Substituting equation (32) into (15) ,  and using the eigenfunction expansion approach ,
 one can derive the following governing equation for  R Ú

 mn ( r ) :
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 where
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 …  Ú  cosh( k  Ú h )
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 m ( z )  d z  (35)

 and  s m  5  1 for  m  5  0 ,  s m  5  2 1 for  m  .  0 .  By integrating and using the dispersion
 relationships for  k Ú

 0   and  k Ú

 m ,  we obtain :
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 The governing equations for  R Ú

 mn ( r ) are now inhomogeneous ,  with the homogeneous
 part (when all the  A m   are equal to zero) being the Bessel equation (for  m  5  0) and the
 modified Bessel equation (for  m  .  0) .  As described in section 3 . 2 ,  one can use the
 Sommerfeld condition to specify the behavior as  r  5  ̀  .  The final boundary condition
 needed is that at  r  5  a ,  namely

 d R Ú

 mn ( a )
 d r

 5  0 .  (36)

 The exact solution to the inhomogeneous ordinary dif ferential equation (34) ,  subject
 to homogeneous boundary conditions at  r  5  a  and  r  5  b (  5  ̀  ) can be readily written
 [as described in detail for the monochromatic case by Huang & Eatock Taylor (1996)] :
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 Here  G Ú

 mn ( r ,  j  ) are the Green’s functions ,  which are given by
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 where
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 m a ) / K 9 n ( k Ú
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 As discussed in Huang & Eatock Taylor (1996) ,  to the zeroth order of continuity in
 f  Ú

 2 D ,  the second term on the right-hand side of equation (37) ,  multiplied by  » n  ,  would
 cancel out the first term on the right-hand side of equation (32) ,  and therefore  f  Ú

 2 D   is
 reduced to the simpler form ,   f  Ú

 2 D 0 ,  given by

 f  Ú

 2 D 0 ( r ,  θ  ,  z )  5  O ̀
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 » n  cos( n θ  ) H  O ̀
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 Here subscript 0 refers to  C 0  continuity .  This expression is simple and semi-analytical ,
 and is in fact of a suf ficiently general form to provide a particular solution for the
 dif fraction of bichromatic waves by any vertical axisymmetric structure having a radius
 a  at the waterline .  The  C 0  order of continuity is suf ficient to yield accurate results for
 second-order forces ,  wave run-up and free-surface elevation .
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 In numerical implementation ,  the line integral in equation (42) can conveniently be
 divided into two parts :  a near-field part which accounts for the contribution of the
 evanescent waves ,  and a far-field part in which the local waves are neglected .  The first
 part is evaluated by numerical quadrature ,  and the second part is integrated
 analytically by adopting the asymptotic forms of the associated Hankel functions .
 Details of this approach can be found in Kim & Yue (1989) ,  and Chau & Eatock
 Taylor (1992) .

 3 . 4 .  T HE  E XPRESSION FOR  f  Ú

 2 D ,n   IN  I NFINITE  W ATER  D EPTH

 The methodology for obtaining the second-order particular solution for the sum and
 dif ference potentials presented in Section 3 . 3 is also suitable for extending the solution
 to the infinite water depth case ,  in which the second-order sum- and dif ference-
 frequency incident and dif fraction potentials vanish .  In this case the general expression
 for the particular solution in equation (32) is changed into

   f  Ú

 2 D ,n ( r ,  z )  5  » n
 exp(2 …  Ú z )

 …  Ú
 q Ú

 n  ( r )  1  » n H R  Ú

 0 n ( r ) Z  Ú

 0  ( z )  1 E ̀

 0
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 n  ( m r ) Z Ú ( m  ,  z )  d m J ,  (43)

 where the eigenvalue  m   belongs to a continuous spectrum .   Z  Ú

 0  ( z ) and  Z  Ú ( m  ,  z ) are
 now the normalized eigenfunctions

 Z Ú

 0  ( z )  5  4 2 …  Ú e …  Ú z ,  (44)

 Z ( m  ,  z )  5 –  2
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 [ m  cos( m z )  1  …  Ú  sin( m z )] .  (45)

 By using the same procedures as described in Section 3 . 3 we can derive expressions for
 R Ú

 0 n , R  Ú

 n  ( m  ,  r ) ,  which are similar to those for the case of finite water depth .  We
 thereby obtain the complete expression for  f  Ú

 2 D ,n :

 f  Ú

 2 D ,n  5  » n H Z Ú

 0  (0) Z  Ú

 0  ( z )  E ̀

 a
 j q Ú

 n  ( j  ) G  Ú

 0 n ( r ,  j  )  d j

 1 E ̀

 0
 Z  Ú ( m  ,  0) Z Ú ( m  ,  z )  E ̀

 a
 j q Ú

 n  ( j  ) G n ( m r ,  m j  )  d j  d m  1
 exp(2 …  Ú z )

 …  Ú
 q Ú

 n  ( r )

 2 F 4 2  Z Ú

 0  ( z )
 3 …  Ú

 4 …  Ú
 1 E ̀

 0
 S E 0

 2 ̀

 exp(2 …  Ú z ) Z Ú ( m  ,  z )
 …  Ú

 d z D Z Ú ( m  ,  z )  d m G q Ú

 n  ( r ) J .  (46)

 The expression for  G Ú

 0 n ( r ,  j  ) is the same as that in the finite water depth case ,  while
 G n ( m r ,  m j  )   is slightly modified ,  the dif ference being that  k Ú

 m   should be replaced by  m .
 To the zeroth-order of continuity ,  the potential  f  Ú

 2 D ,n   for infinite depth can be
 expressed as

 f  Ú

 2 D ,n  5  » n F Z Ú

 0  (0) Z  Ú

 0  ( z )  E ̀

 a
 j q Ú

 n  ( j  ) G  Ú

 0 n ( r ,  j  )  d j

 1 E ̀

 0
 Z  Ú ( m  ,  0) Z Ú ( m  ,  z )  E ̀

 a
 j q Ú

 n  ( j  ) G n ( m r ,  m j  )  d j  d m G .  (47)

 This is seen to be analogous to the finite water depth case .
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 4 .  QUADRATIC TRANSFER FUNCTIONS (QTFs)

 By using the same perturbation procedure as for the second-order potential ,  one can
 also express the pressure  p ( t ) ,  the free-surface elevation  z  ( t ) ,  and the total force  F ( t )
 and moment  M ( t ) as perturbation series in  » .  The associated first- and second-order
 terms are given by :

 [  p (1) ( t ) ,  z  (1) ( t )]  5 F  2  r
 Û f  (1)

 Û t
 ,  2

 1
 g

 Û f  (1)

 Û t
 U

 z 5 0
 G  ,  (48)

 [  p ( 2 ) ( t ) ,  z  ( 2 ) ( t )]  5 F 2 r
 Û f  ( 2 )

 Û t
 2

 1
 2

 r  ( = f  (1) ) 2 ,

   2
 1

 2 g
 ( = f  (1) ) 2  1

 1
 g 2

 Û f  (1)

 Û t

 Û
 2 f  (1)

 Û t  Û z
 2  r

 Û f  ( 2 )

 Û t
 U

 z 5 0
 G .  (49)

 When  p ( t ) is known ,  the total force and moment can be obtained by integrating over
 the wetted body surface .  In the following ,  we define  M ( t ) as the moment about the
 seabed .

 The second-order free-surface elevation ,  forces and moments can be expressed as :

 [ z  ,  F ,  M ]  5  R  O 2
 j 5 1

 O 2
 l 5 1

 H F A j A l

 a
 h  1

 jl  ,  r gaA j A l F 1
 jl  ,  r gahA j A l M 1

 j  G e 2 i v 1 t

   1 F A j A * l
 a

 h  2
 jl  ,  r gaA j A l F 2

 jl ,  r gahA j A l M 2
 jl G e 2 i v 2 t J  .  (50)

 h  Ú

 jl  ,  F Ú

 jl  ,  and  M Ú

 jl    are the quadratic transfer functions defined respectively for  z  ( t ) ,  F ( t )
 and  M ( t ) ,  which can be split into separate contributions from quadratic ef fects from the
 first order potentials (subscript  q ) ,  and contributions from the second order potentials
 (subscript  p ) .  Thus

 [ h  Ú

 jl  ,  F Ú

 jl  ,  M Ú

 jl  ]  5  [ h  Ú

 jlq ,  F Ú

 jlq ,  M Ú

 jlq ]  1  [ h  Ú

 jlp ,  F Ú

 jlp ,  M Ú

 jlp ] .  (51)

 As a result of the simple geometry ,  we can derive analytical expressions for the
 quadratic components of the surge and pitch force QTFs as follows :

 [ F  Ú

 x ,jlq ,  M Ú

 y ,jlq ]  5  Ú

 2i
 π  ( k j a )( k l a )

 O ̀
 n 5 0

 ( 2 1) n Ω Ú

 njl F 1  Ú

 gk j k l h

 v j v l

 I 2
 F ,M  1  I 1

 F ,M n ( n  1  1) / ( k j k l a
 2 )

 cosh  k j h  cosh  k l h
 G ,

 (52)

 where ,  as before ,  the  Ú    sign is  1   for the sum-frequency problems and  2   for the
 dif ference-frequency problems .   I Ú

 F    is for the surge force and  I Ú

 M   is for the pitch moment ,
 defined by

 I Ú

 F  5
 sinh  k 1 h

 2 k 1 h
 Ú

 sinh  k 2 h

 2 k 2 h
 ,  (53)

 I Ú

 M  5
 1
 2
 F sinh  k 1 h

 k 1 h
 2

 cosh( k 1 h )  2  1
 ( k 1 h ) 2  Ú S sinh  k 2 h

 k 2 h
 2

 cosh( k 2 h )  2  1
 ( k 2 h ) 2  D G  .

 (54)
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 Furthermore ,

 Ω 1
 njl  5

 1
 H 9 n 1 1 ( k j a ) H 9 n ( k l a )

 1
 1

 H 9 n ( k j a ) H 9 n 1 1 ( k l a )
 ,  (55)

 Ω 2
 njl  5

 1
 H 9 n 1 1 ( k j a ) H 9 * n  ( k l a )

 2
 1

 H 9 n ( k j a ) H 9 * n 1 1 ( k l a )
 .  (56)

 5 .  NUMERICAL RESULTS

 5 . 1 .  C OMPARISON OF  QTFs  WITH  E XISTING  R ESULTS

 In testing the method presented in this paper ,  and the associated numerical algorithms ,
 we have first considered the surge force QTFs for two cases for which other published
 QTF data are available .  These correspond to  h  / a  5  1 and  h  / a  5  4 ,  respectively .

 Table 1 gives results for components of sum-frequency surge force QTF ,  for the case
 of  h  / a  5  1 .  The upper triangular matrix presents analytical results from the method
 presented in this paper ,  and the lower triangle presents Kim & Yue’s (1990) numerical
 results over the same range of the bi-frequency plane .  The nondimensional frequencies
 are defined by  … #  i  5  v  2

 i  a  / g , i  5  j , l .  At each frequency pair ,  results are tabulated for the
 magnitude of the quadratic force due to the first order potentials ,   u F  Ú

 x ,jlq u ;  the force due
 to the sum frequency potential  u F  Ú

 x ,jlp u ;  and the total second order force  u F  Ú

 x ,jl u .  Kim &
 Yue’s results were obtained from a ring source boundary element analysis ,  which yields

 T ABLE  1
 Magnitudes of the components of second-order sum-frequency surge force QTF on a vertical
 circular cylinder ,  for  h  / a  5  1 .  The upper right triangle contains our present analytical results ,  and
 the lower triangle contains Kim & Yue’s results .  The values shown are :  first row  u F  Ú

 x ,jlq u ,  second
 row  u F  Ú

 x ,jlp u ,  third row  u F  Ú

 x ,jl u

 … #  j  1 ? 0  1 ? 2  1 ? 4  1 ? 6  1 ? 8  2 ? 0

 … #  l

 1 ? 0

 1 ? 2

 1 ? 4

 1 ? 6

 1 ? 8

 2 ? 0

 1 ? 440  u
 1 ? 636  u
 0 ? 939  u
 1 ? 577
 1 ? 963
 0 ? 782

 1 ? 709
 2 ? 308
 0 ? 778

 1 ? 802
 2 ? 582
 0 ? 850

 1 ? 828
 2 ? 710
 0 ? 903

 1 ? 778
 2 ? 661
 0 ? 886

 1 ? 441
 1 ? 639
 0 ? 946

 1 ? 676  u
 2 ? 262  u
 0 ? 752  u
 1 ? 764
 2 ? 549
 0 ? 847

 1 ? 813
 2 ? 752
 0 ? 959

 1 ? 797
 2 ? 807
 1 ? 103

 1 ? 709
 2 ? 682
 0 ? 973

 1 ? 578
 1 ? 976
 0 ? 775

 1 ? 677
 2 ? 264
 0 ? 757

 1 ? 805  u
 2 ? 754  u
 0 ? 971  u
 1 ? 808
 2 ? 876
 1 ? 074

 1 ? 753
 2 ? 857
 1 ? 105

 1 ? 634
 2 ? 671
 1 ? 037

 1 ? 710
 2 ? 243
 0 ? 769

 1 ? 766
 2 ? 516
 0 ? 829

 1 ? 807
 2 ? 756
 0 ? 972

 1 ? 772  u
 2 ? 930  u
 1 ? 160  u
 1 ? 689
 2 ? 872
 1 ? 184

 1 ? 556
 2 ? 668
 1 ? 114

 1 ? 804
 2 ? 645
 0 ? 886

 1 ? 815
 2 ? 744
 0 ? 941

 1 ? 811
 2 ? 831
 1 ? 045

 1 ? 776
 2 ? 931
 1 ? 157

 1 ? 593  u
 2 ? 816  u
 1 ? 226  u
 1 ? 467
 2 ? 688
 1 ? 227

 1 ? 832
 2 ? 714
 0 ? 909

 1 ? 801
 2 ? 830
 1 ? 031

 1 ? 758
 2 ? 872
 1 ? 115

 1 ? 695
 2 ? 862
 1 ? 167

 1 ? 602
 2 ? 821
 1 ? 222

 1  368  u
 2 ? 692  u
 1 ? 334  u

 1 ? 786
 2 ? 635
 0 ? 855

 1 ? 717
 2 ? 662
 0 ? 955

 1 ? 643
 2 ? 705
 1 ? 062

 1 ? 566
 2 ? 700
 1 ? 135

 1 ? 479
 2 ? 691
 1 ? 211

 1 ? 384
 2 ? 694
 1 ? 322
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 T ABLE  2
 Magnitudes of quadratic components of the second-order sum- and dif ference-frequency surge
 force QTF for a vertical circular cylinder ,  for  h  / a  5  4 .  The upper triangle contains results for the
 sum-frequency problem ,  and the lower triangle contains results for the dif ference-frequency
 problem .  The values shown are :  first row ,  present theory ;  second-row ,  Kim & Yue (1990) ;  third

 row ,  Moubayed & Williams (1995)

 … #  j  1 ? 0  1 ? 2  1 ? 4  1 ? 6  1 ? 8  2 ? 0

 … #  l

 1 ? 0

 1 ? 2

 1 ? 4

 1 ? 6

 1 ? 8

 2 ? 0

 0 ? 669  u
 0 ? 666  u
 0 ? 666  u
 0 ? 650
 0 ? 647
 0 ? 648

 0 ? 615
 0 ? 612
 0 ? 614

 0 ? 581
 0 ? 578
 0 ? 581

 0 ? 556
 0 ? 552
 0 ? 559

 0 ? 538
 0 ? 534
 0 ? 544

 1 ? 492
 1 ? 493
 1 ? 494

 0 ? 638  u
 0 ? 636  u
 0 ? 637  u
 0 ? 615
 0 ? 612
 0 ? 613

 0 ? 591
 0 ? 588
 0 ? 591

 0 ? 571
 0 ? 567
 0 ? 572

 0 ? 550
 0 ? 547
 0 ? 555

 1 ? 546
 1 ? 546
 1 ? 546

 1 ? 642
 1 ? 641
 1 ? 640

 0 ? 606  u
 0 ? 603  u
 0 ? 604  u
 0 ? 597
 0 ? 594
 0 ? 596

 0 ? 586
 0 ? 583
 0 ? 586

 0 ? 570
 0 ? 566
 0 ? 572

 1 ? 682
 1 ? 681
 1 ? 680

 1 ? 775
 1 ? 774
 1 ? 773

 1 ? 870
 1 ? 868
 1 ? 869

 0 ? 603  u
 0 ? 600  u
 0 ? 602  u
 0 ? 605
 0 ? 602
 0 ? 604

 0 ? 596
 0 ? 593
 0 ? 598

 1 ? 853
 1 ? 850
 1 ? 851

 1 ? 912
 1 ? 909
 1 ? 911

 1 ? 948
 1 ? 945
 1 ? 949

 1 ? 960
 1 ? 907
 1 ? 964

 0 ? 618  u
 0 ? 615  u
 0 ? 617  u
 0 ? 619
 0 ? 615
 0 ? 619

 1 ? 973
 1 ? 969
 1 ? 973

 1 ? 985
 1 ? 981
 1 ? 986

 1 ? 960
 1 ? 957
 1 ? 964

 1 ? 914
 1 ? 910
 1 ? 921

 1 ? 825
 1 ? 820
 1 ? 836

 0 ? 627  u
 0 ? 624  u
 0 ? 627  u

 2 ? 001
 1 ? 995
 2 ? 005

 1 ? 965
 1 ? 959
 1 ? 970

 1 ? 884
 1 ? 878
 1 ? 893

 1 ? 793
 1 ? 786
 1 ? 804

 1 ? 685
 1 ? 677
 1 ? 699

 1 ? 554
 1 ? 544
 1 ? 571

 the second-order potential for axisymmetric bodies .  Good agreement is found between
 our results and these published data .

 Another set of comparisons ,  for the components of both sum and dif ference
 frequency surge force QTFs ,  is presented in Tables 2 and 3 .  These correspond to the
 case of  h  / a  5  4 ,  for which results have been published by both Kim & Yue (1990) and
 Moubayed & Williams (1995) .  As mentioned above ,  Kim & Yue’s results were
 obtained from a direct numerical solution of the second-order potential for axisymmet-
 ric bodies .  The analysis of Moubayed & Williams used the indirect method to obtain
 semi-analytical expressions for the second-order forces .  These tables are organized in a
 dif ferent manner from Table 1 .  Now the lower triangle lists the results for the
 dif ference-frequency problem ,  while the upper triangle contains the sum-frequency
 results .  At each frequency pair ,  three numbers are given ,  corresponding to our results ,
 those of Kim & Yue ,  and those of Moubayed & Williams ,  respectively .  The magnitudes
 of the quadratic forces due to the first-order potentials are given in Table 2 ,  and the
 total forces in Table 3 .  We have not listed the forces due to the sum and dif ference
 frequency potentials ,  since there are no directly comparable published results for the
 latter case .  It is clear ,  however ,  from the data given in these tables that the results all
 compare very well .  Except for the magnitude of the total surge force QTF at
 ( … #  j  ,  … #  l )  5  (2 ? 0 ,  2 ? 0) ,  all other data are found to be close to those of Kim & Yue and
 Moubayed & Williams .  The cause for the single substantial discrepancy is not clear .

 A fuller understanding of the characteristics of the sum and dif ference frequency
 surge force QTFs may be gained from contour plots .  Figures 1 – 3 show such plots for
 the case  h  / a  5  4 .  Each figure contains three contour plots ,  corresponding to (a) the
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 T ABLE  3
 Magnitudes of the total second-order sum and dif ference frequency surge force QTF for a
 vertical circular cylinder ,  for  h  / a  5  4 .  The upper triangle contains results for the sum-frequency
 problem ,  and the lower triangle contains results for the dif ference-frequency problem .  The
 values shown are :  first row ,  present theory ;  second-row ,  Kim & Yue (1990) ;  third row ,

 Moubayed & Williams (1995)

 … #  j  1 ? 0  1 ? 2  1 ? 4  1 ? 6  1 ? 8  2 ? 0

 … #  l

 1 ? 0

 1 ? 2

 1 ? 4

 1 ? 6

 1 ? 8

 2 ? 0

 0 ? 669  u
 0 ? 666  u
 0 ? 666  u
 0 ? 693
 0 ? 689
 0 ? 686

 0 ? 776
 0 ? 763
 0 ? 751

 0 ? 849
 0 ? 856
 0 ? 840

 0 ? 974
 0 ? 943
 0 ? 913

 0 ? 980
 1 ? 009
 0 ? 992

 1 ? 526
 1 ? 518
 1 ? 466

 0 ? 638  u
 0 ? 636  u
 0 ? 637  u
 0 ? 646
 0 ? 640
 0 ? 641

 0 ? 700
 0 ? 701
 0 ? 697

 0 ? 769
 0 ? 788
 0 ? 761

 0 ? 845
 0 ? 877
 0 ? 862

 1 ? 667
 1 ? 641
 1 ? 602

 2 ? 092
 2 ? 084
 1 ? 997

 0 ? 606  u
 0 ? 603  u
 0 ? 604  u
 0 ? 616
 0 ? 615
 0 ? 617

 0 ? 680
 0 ? 678
 0 ? 677

 0 ? 777
 0 ? 765
 0 ? 734

 1 ? 749
 1 ? 748
 1 ? 725

 2 ? 298
 2 ? 262
 2 ? 134

 2 ? 621
 2 ? 612
 2 ? 548

 0 ? 603  u
 0 ? 600  u
 0 ? 602  u
 0 ? 615
 0 ? 619
 0 ? 622

 0 ? 690
 0 ? 678
 0 ? 676

 1 ? 883
 1 ? 853
 1 ? 783

 2 ? 336
 2 ? 302
 2 ? 225

 2 ? 795
 2 ? 714
 2 ? 630

 3 ? 030
 3 ? 021
 2 ? 910

 0 ? 618  u
 0 ? 615  u
 0 ? 617  u
 0 ? 617
 0 ? 629
 0 ? 630

 1 ? 801
 1 ? 809
 1 ? 724

 2 ? 294
 2 ? 182
 2 ? 091

 2 ? 474
 2 ? 505
 2 ? 422

 2 ? 859
 2 ? 935
 2 ? 848

 3 ? 294
 3 ? 277
 3 ? 184

 0 ? 627  u
 0 ? 624  u
 0 ? 627  u

 1 ? 681
 1 ? 620
 1 ? 563

 1 ? 798
 1 ? 899
 1 ? 793

 2 ? 114
 2 ? 094
 1 ? 998

 2 ? 372
 2 ? 375
 2 ? 272

 3 ? 001
 3 ? 018
 2 ? 999

 3 ? 507
 3 ? 052
 3 ? 151

 quadratic component ,  (b) the component based on the sum or dif ference frequency
 potential ,  (c) the total .  Figure 1 gives the sum frequency QTFs over the range
 1  ,  … #  i  ,  2 , i  5  1 , 2 .  It is immediately apparent that the quadratic component does not
 vary strongly with distance away from the diagonal  … #  1  5  … #  2  ,  but the sum frequency
 potential component falls of f rapidly with this distance at the higher end of the range .
 Since the latter is substantially larger than the former ,  it provides the pattern for the
 total second-order force .  This has a ridge along the diagonal ,  which increases in height
 with increase in frequency .  This behavior is continued at higher frequencies ,  as shown
 in Figure 2 ,  which covers the range 2  ,  … #  i  ,  3 .

 Figure 3 is equivalent to Figure 1 ,  but shows the dif ference frequency components
 over this range .  The quadratic component in Figure 3(a) is fairly flat ,  with a route over
 the pass at  … #  1  5  … #  2  5  1 ? 5 in the direction  … #  1  1  … #  2  5  3 .  (In Figure 1(a) there is a pass at
 … #  1  5  … #  2  5  1 ? 6 ,  but in the orthogonal direction . ) The component due to the dif ference
 frequency potential is shown in Figure 3(b) .  This is ,  of course ,  identically zero along
 … #  1  5  … #  2  ,  and increases away from the diagonal .  As a result ,  the total dif ference
 frequency QTF ,  shown in Figure 3(c) ,  has a valley along the diagonal  … #  1  5  … #  2  ,  with the
 lowest point near  … #  1  5  … #  2  5  1 ? 5 .

 Results for the sum frequency components in the case of  h  / a  5  1 are shown in Figure
 4 for the range 1  ,  … #  i  ,  2 .  The quadratic force component in Figure 4(a) is similar to ,
 though slightly lower in magnitude than ,  the corresponding result in Figure 1(a) for the
 longer cylinder .  The sum frequency potential component in Figure 4(b) is substantially
 less than that for the longer cylinder ,  as is the total sum frequency force in Figure 4(c) .

 The influence of water depth is shown more clearly in Figure 5 .  Results are given for
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 Figure 1 .  Contour plots of sum-frequency QTF (1  ,  … #  i  ,  2) for surge on a bottom-seated cylinder
 ( h  / a  5  4) :   (a) quadratic term ;  (b) sum-frequency potential term ;  (c) total .

 h  / a  5  1 ,  2 ,  4 and 10 ,  based on the finite water depth theory ;  and results are also given
 for infinite water depth using the theory of Section 3 . 4 for the second-order particular
 solution .  Figure 5(a) shows the quadratic force component ,  while Figure 5(b) shows the
 sum-frequency potential term ,  in both cases plotted against  … #  1  for a constant dif ference
 frequency given by  … #  2  2  … #  1  5  0 ? 2 .  The quadratic terms in finite water depth are seen to
 converge to the infinite water depth case for increasing  … #  1  .  This is not the case for the
 sum-frequency potential term :  as discussed by Eatock Taylor & Hung (1987) ,  this is
 because the second order sum-frequency potential has a more even distribution with
 depth than does the first-order potential .  All the results ,  however ,  confirm that as the
 finite water depth solution is evaluated in increasing depths ,  the results converge to
 those for infinite depth .
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 Figure 2 .  Contour plots of sum-frequency QTF (2  ,  … #  i  ,  3) for surge on a bottom-seated cylinder
 ( h  / a  5  4) :   (a) quadratic term ;  (b) sum-frequency potential term ;  (c) total .

 5 . 2 .  F REE  S URFACE  E LEVATIONS

 An important motivation for the analysis developed here is an interest in evaluating the
 dif fracted wave field to second-order at any point in the free surface .  This requires the
 direct solution we have developed for the second-order potential ,  rather than the
 indirect formulation which has been used by others to evaluate second-order forces .  In
 this section we present some results in bichromatic waves for the case of the cylinder
 where  h  / a  5  4 .  Although it is relatively straightforward to compute plots of the free
 surface using the method presented ,  it is not considered that an extensive set of such
 plots serves a useful purpose here .  Rather ,  a sample of contour plots is given in Figures
 6 and 7 ,  and then consideration is given to the time history of wave run-up on the
 up-wave side of the cylinder ,  in each case for  … #  1  5  1 ? 2 ,  … #  2  5  1 ? 8 .
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 Figure 3 .  Contour plots of dif ference-frequency QTF (1  ,  … #  i  ,  2) for surge on a bottom-seated cylinder
 ( h  / a  5  4) :   (a) quadratic term ;  (b) dif ference-frequency potential term ;  (c) total .

 Figure 6(a) shows a contour plot of the maximum wave elevation over a square of
 side 10 a  centerd on the cylinder .  The two waves have the same amplitude ,
 A 1  5  A 2  5  0 ? 05 a ,  and have crests in phase at the axis of the cylinder .  The maximum is
 given by the sum of first- and second-order wave contributions ,  and for dif ferent spatial
 positions this maximum occurs at dif ferent times .  The contours correspond to the
 elevation divided by ( A 1  1  A 2 ) .  Because the particular case shown in Figure 6(a) is for
 a rather small amplitude ,  the first-order contribution dominates .  The contours of
 maximum defined in this manner are therefore very similar to the contours of
 first-order wave amplitude associated with the linear wave dif fraction problem (for two
 incoming waves of the appropriate frequencies) .  If the ef fect of dif fraction were
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 Figure 4 .  Contour plots of sum-frequency QTF (1  ,  … #  i  ,  2) for surge on a bottom-seated cylinder
 ( h  / a  5  1) :   (a) quadratic term ;  (b) sum-frequency potential term ;  (c) total .

 negligible (e . g .  at much lower frequencies) ,  the surface plotted would reduce to a
 horizontal plane of unit height .

 Figure 6(b) shows analogous results ,  but for waves of higher amplitude ,  given by
 A 1  5  A 2  5  0 ? 25 a .  Second-order ef fects are now more appreciable ,  and the maximum
 elevations are generally increased .  The value on the up-wave face of the cylinder is well
 in excess of 2 .  The maximum in this latter quantity is found (numerically) to occur near
 the time 0 ? 16 T  after the crest of the incoming wave reaches  x  5  0 (for large  y ) ,  where  T
 is defined as 2 π  / ( v  2  2  v  1 ) .  Thus ,   T  is the period of the second-order dif ference-
 frequency wave ,  which is twice the period of the low-frequency modulation of this
 wave pair .  The behavior of the free surface in the general vicinity of the cylinder at
 t  / T  5  0 ? 156   is shown in Figure 7 .
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 Figure 5 .  Influence of water depth on second-order surge force ( … #  2  2  … #  1  5  0 ? 2) ,  for (a) quadratic
 component ,  and (b) sum-frequency potential component :  (——) ,   h  / a  5  1 ;  ( –  –  – ) , h  / a  5  2 ;  ( .  .  .  .  .  . ) , h  / a  5  4 ;

 ( –  ?  –  ?  – ) , h  / a  5  10 ;  ( s )  h  / a  5  ̀  .

 Figure 8 shows time histories of the wave elevation on the up-wave side of the
 cylinder (i . e .  the wave run-up at  x  / a  5  2 1 , y  / a  5  0) .  Again this is for the case  … #  1  5  1 ? 2 ,
 … #  2  5  1 ? 8 , A 1  5  A 2  5  0 ? 25 a ) ,  and the two waves are in phase at the axis of the cylinder .
 The figure shows the behavior over the period  T .  The four lines correspond to :  (a)
 the linear component ,  a modulated wave of period 2 T  ;  (b) the second-order dif ference
 frequency wave ,  of period  T  ;  (c) the second-order sum frequency wave of period
 2 π  / ( v  1  1  v  2 ) ;   (d) the sum of the previous three components .  Linear dif fraction is seen
 to increase the local first-order wave elevation by around 70% above the incident wave ,
 while the second-order component increases the first-order run-up by about 47% in
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 Figure 6 .  Contours of maximum free surface elevation (divided by  A 1  1  A 2 ) in the vicinity of the cylinder
 ( h  / a  5  4) :   (a)  A 1 / a  5  A 2 / a  5  0 ? 05 ;  (b)  A 1 / a  5  A 2 / a  5  0 ? 25 .

 this case .  The ef fect of the second-order contribution is especially significant ,  because it
 has a maximum in phase with the maximum first-order run-up .

 6 .  CONCLUSIONS

 The semi-analytical solution for second-order dif fraction of regular waves by a vertical
 cylinder has been extended to the case of a bichromatic incident wave field .
 Expressions have been obtained for sum- and dif ference-frequency potentials valid
 throughout the fluid domain .  From these ,  we have obtained quadratic transfer
 functions for the sum- and dif ference-frequency forces on the cylinder ,  and these
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 Figure 7 .  Contours of free surface elevation (divided by  A 1  1  A 2 ) in the vicinity of the cylinder ( h  / a  5  4)
 at  t  / T  5  0 ? 1611 .
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 Figure 8 .  Time histories of run-up (divided by  A 1  1  A 2 ) at the up-wave face of the cylinder :  ( ?  ?  ?  ?  ?  ? ) ,
 first-order component ;  ( –  ?  –  ?  – ) ,  dif ference frequency component ;  ( –  –  – ) ,  sum-frequency component ;

 (——) ,  total .

 compare satisfactorily with results obtained at selected pairs of frequencies by Kim &
 Yue (1990) using a direct numerical scheme ,  and by Moubayed & Williams (1995)
 using an indirect approach .  By using our semi-analytical method it is very easy to
 compute QTFs at a large number of frequency pairs ,  and we have therefore used
 contour plots to illustrate the frequency dependence of the second-order forces in
 bichromatic waves .  The total sum-frequency surge force is found to have a ridge along
 the diagonal ( v  1  5  v  2 ) ,  which tends to increase in height with increase in sum-
 frequency over the range considered .  The total dif ference-frequency force ,  however ,
 has a valley along the diagonal .

 Our direct semi-analytical solution can also be used to obtain free surface elevations ,
 and in particular to investigate the maximum run-up at a cylinder ,  as predicted by
 second-order theory .  Our results have demonstrated that the maximum of the first- and
 second-order wave components of the run-up at the up-wave face of the cylinder can
 coincide ,  leading to a substantial local increase due to the second-order ef fects .

 ACKNOWLEDGEMENTS

 This work forms part of the research programme ‘‘Uncertainties in Loads on Of fshore
 Structures’’ sponsored by EPSRC through MTD Ltd .  (grant GR / J23167) and jointly
 funded with :  Aker Engineering a . s .,  Amoco (UK) Exploration Company ,  BP Explora-
 tion Operating Co .  Ltd .,  Brown & Root ,  Exxon Production Research Company ,
 Health and Safety Executive ,  Shell UK Exploration and Production ,  Statoil ,  and
 Texaco Britain Ltd .

 R EFERENCES

 A BUL -A ZM ,  A .  G .  & W ILLIAMS ,  A .  N .  1988 Second-order dif fraction loads on truncated
 cylinders .   ASCE Journal of Waterways , Port , Coastal and Ocean Di y  ision  114 ,  436 – 454 .

 A BUL -A ZM ,  A .  G .  & W ILLIAMS ,  A .  N .  1989a Approximation of second-order dif fraction loads
 on arrays of vertical circular cylinders .   Journal of Fluids and Structures  3 ,  17 – 36 .

 A BUL -A ZM ,  A .  G .  & W ILLIAMS ,  A .  N .  1989b Second-order dif fraction loads on arrays of
 semi-immersed circular cylinders .   Journal of Fluids and Structures  3 ,  365 – 388 .

 C HAU ,  F .  P .  1989 The second-order velocity potential for dif fraction of waves by fixed of fshore
 structures .  Ph . D .  Dissertation ,  University College London ,  University of London ,  U . K .



 R .  EATOCK TAYLOR AND J .  B .  HUANG 484

 C HAU ,  F .  P .  & E ATOCK  T AYLOR ,  R .  1992 Second-order wave dif fraction by a vertical cylinder .
 Journal of Fluid Mechanics  240 ,  571 – 599 .

 C HEN ,  X .  B .,  M OLIN ,  B .  & P ETITJEAN ,  F .  1991 Faster evaluation of resonant exciting loads on
 tension leg platforms .  In  Of fshore Engineering  8 ,  427 – 441 .  Plymouth :  Pentech Press .

 E ATOCK  T AYLOR ,  R .  1991 Assessment of springing in tension leg platforms .  In  Ad y  ances in
 Marine Structures - 2  (eds C .  S .  Smith & R .  S .  Dow) ,  pp .  174 – 207 .  London :  Elsevier Applied
 Science .

 E ATOCK  T AYLOR ,  R .  & H UNG ,  S .  M .  1987 Second-order dif fraction forces on a vertical cylinder
 in regular waves .   Applied Ocean Research  9 ,  19 – 30 .

 H ERFJORD ,  K .  & N IELSEN ,  F .  G .  1986 Nonlinear wave forces on a fixed vertical cylinder due to
 the sum frequency waves in irregular seas .   Applied Ocean Research  8 ,  8 – 21 .

 G HALAYINI ,  S .  A .  & W ILLIAMS ,  A .  N .  1991 Nonlinear wave forces on vertical cylinder arrays .
 Journal of Fluids and Structures  5 ,  1 – 32 .

 H UANG ,  J .  B .  & E ATOCK  T AYLOR ,  R .  1996 Semi-analytical solution for second-order
 wave-dif fraction by a truncated circular cylinder in monochromatic waves .   Journal of Fluid
 Mechanics  319 ,  171 – 196 .

 K IM ,  M .  H .  & Y UE ,  D .  K .  P .  1988 The non-linear sum frequency wave excitation and response of
 a tension leg platform .  In  Proceedings of  5 th International Conference on Beha y  iour of
 Of fshore Structures , BOSS  8 8  (eds T .  Moan ,  N .  Janbu & O .  Faltinsen) ,  Vol .  2 ,  pp .  687 – 703 .
 Trondheim :  Tapir Publishers .

 K IM ,  M .  H .  & Y UE ,  D .  K .  P .  1989 The complete second-order dif fraction solution for an
 axisymmetric body .  Part 1 :  monochromatic waves .   Journal of Fluid Mechanics  200 ,  235 – 264 .

 K IM ,  M .  H .  & Y UE ,  D .  K .  P .  1990 The complete second-order dif fraction solution for an
 axisymmetric body .  Part 2 :  bichromatic incident waves and body motions .   Journal of Fluid
 Mechanics  211 ,  557 – 593 .

 K RIEBEL ,  D .  L .  1992 Nonlinear wave interaction with a vertical circular cylinder .  Part 2 :  wave
 run-up .   Ocean Engineering  19 ,  75 – 99 .

 L EE ,  C-H .,  N EWMAN ,  J .  N .,  K IM ,  M . -H .  & Y UE ,  D .  K .  P .  1991 The computation of second-order
 wave loads .  In  Proceedings of  1 0 th International Conference on Of fshore Mechanics and
 Arctic Engineering ,  Vol .  I-A ,  pp .  113 – 123 .  New York :  ASME .

 L IGHTHILL ,  M .  J .  1979 Waves and hydrodynamic loading .  In  Proceedings of  2 nd International
 Conference on Beha y  iour of Of fshore Structures , BOSS 7 9  (eds H .  S .  Stephens & S .  M .
 Knight) ,  London ,  U . K .,  Vol .  I ,  pp .  1 – 40 .  Cranfield :  BHRA .

 M C I VER ,  P .  & E VANS ,  D .  V .  1984 Approximation of wave forces on cylinder arrays .   Applied
 Ocean Research  6 ,  101 – 107 .

 M OLIN ,  B .  1979 Second-order dif fraction loads on three-dimensional bodies .   Applied Ocean
 Research  1 ,  197 – 212 .

 M OUBAYED ,  W .  I .  & W ILLIAMS ,  A .  N .  1994 The second-order dif fraction loads and associated
 motions of a freely floating cylindrical body in regular waves :  an eigenfunction expansion
 approach .   Journal of Fluids and Structures  8 ,  417 – 451 .

 M OUBAYED ,  W .  I .  & W ILLIAMS ,  A .  N .  1995 Second-order hydrodynamic interactions in an array
 of vertical cylinders in bichromatic waves .   Journal of Fluids and Structures  9 ,  61 – 98 .

 N EWMAN ,  J .  N .  1996 The second-order wave force on a vertical cylinder .   Journal of Fluid
 Mechanics  320 ,  417 – 443 .


